We have rich Saskatchewan curricula, and an important step in planning is to make sense of what curriculum is asking students to know, do, and understand, and to connect to our local context. I just recently had a chance to work with the CTEP students in Cumberland House under the guidance of their instructor Lily McKay-Carrier. She calls this Nistota Curriculum (Understand Curriculum). Place matters, our students matter, and our own professional and personal knowledge matters when planning for instruction and assessment. Our professional judgment and expertise are what helps us design units of study that honour who are where we are teaching.
We know that outcomes are what students need to know, do and understand. They are the destination of instruction, while indicators are the ways that students might show us that they know.
So what is a process that we might use to make sense of curriculum? Mind mapping is a visual way to see connections between curricular ideas and link to our teaching context.
Steps for Mind Mapping:
Determine what course(s) and outcome(s) you are going to cluster into one unit of study.
If you are creating a cross-curricular unit, then you might want to start with one course and then link to others.
Some curricula cluster outcomes into strands that make sense to teach as one unit (i.e. science and social studies), while others make sense to cluster outcomes from different strands or teach them alone (i.e. mathematics), as a strand is too large.
Identify what concepts students would have interacted with BEFORE this unit that would have provided a foundation, and what concepts this unit feeds into next.
Read over the outcomes to get a general sense of what the unit of study will be about. If you were to describe this unit to someone who is not a teacher, what might you say in a sentence or two?
Highlight the main concepts identified in the outcomes and indicators. These are often the NOUNS.
Mind map the main concepts to see how they connect. Often, there is repetition between outcomes, so this helps to streamline the unit.
Ask yourself what activities based on your community or your personal and professional knowledge might connect to curricular ideas. Add these to your mind map.
Sample Unit: Mind Map of Diversity of Living Things generated in collaboration with CTEP students fall, 2020.
Once you have generated teaching ideas, ask yourself if these honour the intent of the indicators in your curriculum. If a student did these things, would they be able to show that they know, do or understand this outcome?
Developing your Mind Map into a Unit of Study
Once you have created a mind map of key concepts and teaching activities, you can
develop essential questions that pull together the unit.
Develop an instructional sequence that includes:
Learning Activities
Assessment – both formative and summative
Materials/resources required
You can see the beginning of a draft unit of study created in collaboration with CTEP students in fall, 2020 focusing on Diversity of Life in Science 6.
Reading and writing are things we expect our students to be able to do in every subject. Our curricula are full of phrases like “Describe…, Explain…, Compare…”, which all require students to organize their thinking in a certain way. The non-fiction text in our math, science, social studies, and PAA courses require our students to break down complicated information. So how do we teach our students who are struggling with taking information in and/or communicating their understanding?
What? I Have to Teach Writing, Too??
Reading and writing are learning tools that exist across curricula. We often have our students read technical information in our science, social studies and mathematics courses and then ask them to write about their understanding during assignments and tests. Sometimes, our students come to us knowing how to do both. Sometimes, we are surprised and disappointed that they don’t seem to know how to apply their reading and writing strategies in our content area. As a math and science specialist, I want my students to use reading and writing as ways to deepen and broaden their understanding of the subjects that I am teaching them.
I would think that an ELA teacher explicitly teaches reading and writing strategies so that their students become stronger readers and writers. My intent as a science teacher is related but different. I want to use literacy instruction so that students understand science better.
I had many experiences early in my career where I assumed my students were able to research, write reports, write conclusions, or complete short answer questions on my exams. Those assumptions led to frustration and feelings of failure for both myself and my students. Sometimes, it took students failing to point out what explicit teaching I needed to do with my classes. Ultimately, if I have students who are struggling with reading and writing in my non-ELA class, I need to teach them those skills.
Reading, Writing and Comprehension
We sometimes view reading and writing as separate ideas. If we view them instead as ways that students take in and output knowledge, we can see that comprehension, or meaning making, is the bridge between the two. Reading is ONE way of taking information in, and writing is ONE way of sharing our knowledge. Our English Language Arts program recognizes that there are other, equally important modes of inputs and outputs.
Comprehension Strategies – Making Meaning
When we take information in, our mind uses different strategies to make meaning of new information. During a conversation, this occurs fluidly where we listen, make sense of information, then speak. The same is true of reading and writing. We read information, make meaning, then may write about what our new understanding is. Many literacy experts have grouped comprehension strategies into anywhere from six to thirteen strategies. Following the work of Ellin Keene, the following are SEVEN comprehension strategies that strong readers use.
For more detailed information about these seven comprehension strategies, see my earlier blog post, Comprehension Across Subjects.
Nonfiction Writing Lesson Framework
Adrienne Gear (2014) suggests the following lesson framework for each nonfiction form:
An introduction to the features of the nonfiction form.
This can be done by analyzing published examples of a nonfiction form.
Independent write and Whole-class write can be woven together in a We DO – You DO cycle.
Whole-class write:
Independent write:
The teacher and class write a passage together, going through the organizing steps together. This can be done on chart paper or projected on a screen.
Writing activities can vary in length. There should be multiple opportunities for each type of writing introduced in a year.
Plan and organize thinkingDraft piece of writingFocus on a writing techniqueRevision and editing techniques
Plan and organize thinkingDraft piece of writingFocus on a writing techniqueRevision and editing techniques
Nonfiction Text Features
There are several text features that are useful within nonfiction to help readers understand the information being presented. These include:
Nonfiction Feature
Purpose
Map
To show location: e.g. habitat of animals
Web
List of any kind: for example, a list of food an animal eats or its enemies
Diagram, labels
Description
Fact Box
Interesting, additional facts
Flow Chart
To show how things work together: e.g., life cycle
Chart
To sort details: e.g. facts about different species
Labels, Captions
To explain a diagram or picture
Timeline
Sequential events or dates
Diagram with Labels
Comparisons
Helpful Nonfiction Mini Lessons
Mini lessons allow you to guide student writing skills without taking up a lot of time. Here are topics that Adrienne Gear suggests for helping improve writing quality. You can see some of her mini lesson resources here. Including ideas for:
Adding Text Features
Interesting Details
Triple-Scoop Words
Comparison using Similes and Metaphors
Voice
Introductions to Hook Your Reader
Sharing Our Understanding: Non-Fiction Forms of Writing
Part of introducing nonfiction forms is for students to recognize key features of each form. This can be done by analyzing published works, both in print and online. Books from your library can be used to help students visualize the type of writing you are expecting them to do. There are many different forms of non-fiction writing that students both read and are expected to write themselves. Each of these forms has their own purpose and form. (Gear, 2014)
Different forms of writing can be used within the same topic and subject area. For example:
Type of Writing
Writer’s Intent
Example
Application: Weather
Description
To provide reader with facts and information about a topic. Related subtopics tell us specific details about the main idea. Writers give details related to our five senses.
Descriptive reports on countries, animals, plants, insects, etc.Classroom blogs.Book or movie reviews.
Describe the weather in Saskatchewan in January.
Instruction
To provide reader with instructions on how to achieve a goal, do something, make something, get somewhere.
How something works: e.g. manuals, how to use something, survival guides.How to do or make something: e.g. recipes, rules for games, science experiments, crafts, instructions on starting a blog page.
Give the instructions for how to make a winter survival kit.
Persuasion
To share an opinion with the reader or attempt to convince the reader to take an action of some kind.
Opinion piece: e.g. favourite book, movie, pet, season.Persuasive piece: e.g. you should eat a healthy diet; no school uniforms; best chocolate bar to buy; oru school is the best.Classroom blogs or online reviews.
Which form of weather is deadliest to humans?
Comparison
To share with the reader the similarities and differences between two topics or ideas.
Compare (similarities) and contrast (differences): e.g. rabbits and hares; Canada and Japan; cars then and now.
Compare a winter blizzard and summer hail in Saskatchewan.
Explanation
To provide reader with facts explaining how or why something happens.
Scientific explanations: e.g. how a spider spins a web, why some things float and others sink.
Explain how blizzards form.
Nonfiction Narrative
To provide reader with sequential description of events in a person’s life, a current or historical event.
Biography of a famous or non-famous person.AutobiographyCurrent event/newspaperPast eventBlogs or tweets
Give a report on the Newfoundland blizzard of January, 2020.
A useful analysis is to look at our curriculum and identify where it would be most useful for students to incorporate each type of writing to deepen their understanding. This can be done in a simple chart such as the one found here.
Pre-Thinking for Writing
Writing can help students understand subject content if we have them do pre-thinking before they write. This pre-thinking has them use comprehension strategies to deepen their understanding so that they can write.
A barrier for students might be that they do not understand either the content that they are having to write about OR they do not understand the structure of what you are asking them to write.
When we have students organize their thinking before they write, they will not only understand their courses better, but they will have their thinking organized in a way that helps them write.
You can take a closer look at different forms of writing, including assessment criteria in the following summaries, as well as view helpful pre-thinking tools for each type of writing:
A useful pre-thinking tool for explanatory writing is a Planning to Explain graphic organizer, that outlines useful words and features.
Ultimately, teaching meaning making and how to express understanding can help our students know the subjects we are teaching them and help them to connect school content with their lives.
Eaton, S. E. (2010, September 26). Reading Strategy: The difference between summarizing and synthesizing. Retrieved from http://www.drsaraheaton.wordpress.com
Gear, A. (2014). Nonfiction Writing Power. Markham: Pembroke Publishers.
Johanson, T., & Broughton, D. (2014). Exploring Comprehension in Physics. Saskatoon: McDowell Foundation.
Keene, E., & Zimmermann, S. (1997). Mosaic of Thought: Teaching Comprehension in a Readers Workshop. Portsmouth: Heinemann.
Public Education & Business Coalition. (n.d.). Thinking Strategies for Learners: A guide to PEBC’s professional development in reading, writing, mathematics and information literacy. Retrieved December 15, 2018, from Public Education & Business Coalition: https://www.pebc.org/wp-content/uploads/publications/thinking-strategies.pdf
Addition, subtraction, multiplication and division are foundational
skills that are applied to many mathematical concepts. Often, when we are hoping
for student automaticity and fluency in numbers, number operations are what we
are talking about.
Mathematical Models
Models are the way we are representing numbers so that we
can do number operations. There are a number of different models that are
helpful to students understanding number operations.
Regardless of what number operation we are talking about, it
is important that children are able to break numbers into parts.
Friendly Numbers – children are often able to understand number
operations with ‘friendly’ numbers like 2, 5, and 10. Breaking a 7 into a and a 2 allows us to use number facts that are
more familiar.
Place Value Partitioning – when we are working with multi-digit
numbers, it is helpful for us to break numbers up into the values of their
digits – for example, 327 is 300 + 20 + 7.
Number Operation Strategies
There are many different strategies that children use to
perform number operations. A misconception is that all children need to know
and use all strategies. It is important for us to expose children to different
strategies through classroom discussion and routines such as number talks and
number strings. When combined with Margaret Smith’s ideas around Orchestrating
Classroom Discussion, we can set a task for students and
Predict what strategies they might use. Order
these from least to most complex.
Observe students doing mathematical tasks –
using white boards allows us to see their thinking. We can then identify
different strategies being used.
Have students share their thinking in an order
from least to most complex. This should not include every child sharing for
every task. A small handful of children sharing in a logical order can help
students understand the next more complex solution. In this way, children are
being exposed to other strategies, will be able to understand those that are
close to their own, and increase the sophistication of their thinking.
Strategies
Connection to Addition
Connection to Multiplication
Counting: This is a common strategy when one of the numbers is small.
Addition by counting or counting on from one number. Ex: 25 + 7 = 25, 26, 27, 28, 29, 30, 31, 32.
Skip counting by one of the numbers being multiplied. 9 x 5 = 9, 18, 27, 36, 45
Decomposing Numbers: breaking numbers apart.
Adding friendly numbers. Ex: when you need to add 12, breaking it into +10 and then +2 more.
Making 10. Ex: when adding 5 + 7, recognizing that 5 + 5 = 10, and so it is 10 + 2 more = 12.
Breaking one or both numbers into place value. Ex: 23 + 47 is 20 + 40; 3 + 7
Multiplying friendly numbers. Ex: when you need to multiply by 6, break it into x 5 and 1 more.
Partial Products: Breaking one or both numbers into place value. Ex: 23 x 47 is (20 + 3) x (40 + 7)
Compensation: this is very common when a number is close to 10.
Rounding one of the numbers to a friendly number, then compensating the answer at the end for the difference. Ex: 36 + 9 is close to 36 + 10, subtract 1. Ex: 36 + 11 is close to 36 + 10, add 1.
Rounding one of the numbers to a friendly number, then compensating the answer at the end for the difference. Ex: 99 x 5 is close to 100 x 5, subtract 5 Ex: 101 x 5 is close to 100 x , add 5
Double/Half
Recognizing that 4 + 4 is double 4, or 8. Recognizing that 4 + 3 is almost double 4, subtract 1.
Recognizing that 5 x a number is the same as ½ of 10 x a number. Ex: 9 x 5 is half of 9 x 10 = 45
Standard Algorithm
Traditional algorithm, symbolic regrouping.
Traditional algorithm, symbolic regrouping.
A Bridge between Addition and Multiplication: Doubles
Doubles are one way to think about adding a number to itself, as well as the start to multiplicative thinking.
Doubles are an important bridge between adding and multiplication.
Addition is the bringing together of two or more numbers, or
quantities to make a new total.
Sometimes, when we add numbers, the total in a given place
value is more than 10. This means that we need to regroup, or carry, a digit to
the next place. There is a great explanation of regrouping for addition and
subtraction on Study.com.
Subtraction is the opposite operation to addition. For each
set of three numbers, there are two subtraction and one addition number facts.
These are called fact families. For example:
As we move from single digit to multi-digit addition and
subtraction, it is important that we maintain place value, and continue to move
through the concrete to abstract continuum.
A helpful progression for teaching addition and subtraction can be found on the Math Smarts site.
This is the first structure that we introduce
children to.
It builds on the understanding of addition but
in the context of equal sized groups.
Rectangular Array/Area Model
This is often the second representation of multiplication introduced It is useful to show the commutative property that 3 x 4 = 4 x 3 = 12
Number Line
A number line can represent skip counting
visually.
Scaling
Scaling is the most abstract structure, as it
cannot be understood through counting.
Scaling is frequently used in everyday life when
comparing quantities or measuring.
Single Digit Multiplication Facts
Multiplication facts should be introduced and mastered by
relating to existing knowledge. If students are stuck in a ‘counting’ stage –
either by ones or skip-counting to know their single-digit multiplication
facts, it is important that they understand strategies beyond counting before
they practice. Counting is a dangerous
stage for students, as they can get stuck in this inefficient and often
inaccurate stage. Students should not
move to multi-digit multiplication before they understand multiplication
strategies for single-digit multiplication.
It is important that students understand the
commutative property 2 x 4 = 8 and 4 x 2 = 8.
2 x 4 should be related to the addition fact 4 +
4 = 8, or double 4.
Using a multiplication table as a visual
structure is helpful to see patterns in multiplication facts.
In an equal grouping (quotition) question, the total number
are known, and the size of each group is known.
The
unknown is how many groups there are.
Equal Sharing
In an equal sharing (partition) question, the total number
are known, and the number of groups is known.
The
unknown is how many are in each group.
Number Line
Ratio
This is a comparison of the scale of two quantities and is
often referred to as scale factor. This is a difficult concept as you can’t
subtract to find the ratio.
Division Facts
Relate division
facts back to multiplication facts families:
Ex) 6 x 8 = 48
8 x 6 = 48
48 ÷ 6 = 8
48 ÷ 8 = 6
Once students have understanding and fluency with single digit multiplication and division fact families they are ready to move on to multi-digit fact families.
So What do Students DO with Number Operations?
Simple computation is not enough for children to experience.
They need to have opportunities to explore and wonder about numbers and how
they work together. Regardless of the routine or task, children should be
encouraged to use different concrete and pictorial models to show their
thinking.
Number strings can help children see the pattern
in number operations. They are helpful for children to see the pattern in
number operations, which is the foundation for algebraic thinking.
Our conversations in mathematics teaching are often centered
around the gaps that we observe in student understanding, or how students are
not ready to learn the grade level mathematics that we are trying to teach
them. When we look at our teaching practices in other subjects, we know that it
is important to Activate and Connect Prior Knowledge, and to provide responsive
instruction if there are skills that our students are missing. The same holds
true in mathematics, but how do we do this in a structured, systematic and
efficient way in our classrooms? The Assess-Respond-Instruct framework, developed
with and implemented by teachers from across Saskatchewan, does exactly that.
Foundationally, the Assess-Respond-Instruct framework
provides opportunities for
teachers and students to know whether students
have an understanding and fluency with prior knowledge, and
filling gaps in knowledge and build fluency, and
engage in grade level mathematics.
In order to embark on this way of teaching, some key questions that drive our planning are:
Differentiation vs Modification
A key idea within mathematics is the difference and similarity between differentiation and modification. Working with a school last week, we brainstormed the following key ideas:
Sometimes, a student needs a modified curriculum because
they are unable to grasp mathematical concepts. This determination is made with
much consultation with the education team, parents, and students. Communication
is key between home and school to ensure that parents understand that their
child is not working towards grade level outcomes. Rather, they are on a
modified curriculum with modified assessment expectations. When a child is
working towards a modified curriculum, it should still be differentiated.
Students need to experience a variety of modes and strategies to help them
achieve their unique learning goals.
The difficulty is when a student or class is inadvertently
experiencing a modified curriculum without the pre-thinking and opportunities
to engage in grade level mathematics. This might look like a child being
identified as ‘not being able’ to add and subtract in grade 4, so they only
work on addition and subtraction when their classmates are working towards
multiplication and division. In this example, the child is not given an
opportunity to engage in grade level outcomes, so the gap in their learning is
even larger the following year.
So what is a possible solution? The Assess-Respond-Instruct Framework!
Designing Pre-Assessments
Pre-assessments should focus on mathematics knowledge that
students need in order to be ready to engage in new, grade-level instruction.
Content to Pre-assess
We can identify the pre-skills necessary for a new unit of
study by mapping curriculum and asking ourselves “What might students know before
this grade to help them understand the content at our grade level?”
P6.1 – Extend understanding of patterns and relations in tables of values and graphs.
P6.2 – Extend understanding of preservation of equality concretely, pictorially, physically, and symbolically.
P6.3 – Extend understanding of patterns and relationships by using expressions and equations involving variables.
In this Grade 6 Saskatchewan example, the blue concepts are grade-level, while the yellow concepts are mathematical ideas that appear in curriculum before Grade 6. By mapping curriculum, you can see that new, grade-level instruction is only one small step beyond what students have experienced in the past.
Analyzing the pre-skills from the example above, we can see that they can be clustered in the following way:
It is important to identify the extent to which students might need to understand a concept. In this Grade 6 example, students need to understand and be fluent in addition with single digit numbers, and subtraction of double digit minus single digit numbers. We would not usually expect students to work with larger numbers when we are solving algebraic equations at this grade level. Even though curriculum has students learn and practice addition and subtraction to 10,000 in Grade 5, we do not need students to use these large numbers in THIS unit of study, so we would not pre-assess or respond to those large numbers.
The content of a pre-assessment for this example unit of study
would include:
Addition of single digit numbers and subtraction
of numbers no larger than 100.
Multiplication of single digit numbers and
division of numbers no larger than 100.
Representing relations, including tables of
values and graphs.
Solving one step equations, including balance scale
representations and missing value equations.
Forms of Pre-assessments
You might have assessment data that you have gathered through school-system pre-assessments, through tools like Pearson’s Numeracy Nets, or you can develop your own simple Pre-assessments.
How might we respond to gaps in pre-skills?
We need to consider both the content and structure that we
are using to respond to gaps in understanding. Many teaching innovations focus
on one or the other. I would suggest that we need to consider both the content
of intervention as well as the process, or structure, that we use to have
students interact with that content.
What is Responsive Content? Differentiating Mathematics Intervention
Too often, our mathematics intervention in upper grades
involves symbolic practice of a topic that a student is unsure of. Rather than
only focussing on symbolic practice, we need to differentiate our intervention
– additional practice worksheets are not enough if a student does not
understand.
What does differentiation look like in mathematics? If we consider NCTM’s ways of representing algebraic ideas, and the Theory of Multiple Intelligences, a simple way to look at differentiation for every math concept might be:
Whether we are looking at responsive instruction or new
instruction, it is important that students are given opportunities to learn new
concepts:
Concretely and visually
Video – this can help auditory learners watch and listen to math concepts
Written explanations – a simple and concise description of that mathematical idea
Game – a way to interact with peers and have mathematical conversations
Practice – to build fluency with foundational math ideas
A planning organizer is helpful in identifying the components that you will have ready for students who need intervention in each topic. The concepts that we focus on for responsive instruction are those identified in our pre-skill analysis of our next unit of instruction. The modes of responsive instruction need to be thought out for each concept, or skill. This provides a robust framework for intervention.
A Classroom Structure – Responsive Stations
There are many ways to structure your classroom to ensure
that your students are receiving the instruction that they need. These might
include classroom routines that focus on readiness skills, or rotational
stations like Daily 3 Math. One innovative structure is Responsive Stations.
Implementation
Once you have the pre-assessment data, students go to those
stations that their data on their pre-assessment indicates that they need.
Some helpful organizational hints include:
Colour coding your boards helps students know where they are heading.
Use a tracking sheet to monitor which pre-skills each student needs to address.
Use stickers as rewards to track what stations have been done.
Use a short post-assessment to determine that a student understands the content.
Use bins of materials at each station to help keep organized.
Include an enrichment station for those students who have pre-skills in place. This enrichment station can include games, additional math topics, and ideas such as creating new videos or games based on math concepts.
Once you have provided opportunities for students to be ready for your grade-level instruction, you can then teach new concepts using rich instructional practices that we know help students understand. Through the year, your class will revisit the same pre-skills over time, as many topics repeat as pre-skills throughout curriculum.
If you are interested in learning more about the Assess-Respond-Instruct Framework for building readiness, or would like to bring professional development to your staff in this area, please contact Terry@johansonconsulting.ca
Outcomes-Based Assessment (OBA) has been on our educator radar for years. I have the pleasure of working with groups of teachers throughout Saskatchewan to dig into what we know, what we wonder about and examine logistical barriers or problems to solve in order to move forward.
What do teachers know? What do teachers wonder about?
Professional development needs to surface teacher knowledge, including any misconceptions that might exist. Too often, professional learning facilitators assume that educators do not know anything so begin from the beginning… or assume that educators know everything and are choosing to resist change. I would argue teachers know a lot… and they, as a collective, want to do best for students and learning. Just like in a classroom, misconstruction of knowledge can occur. It is our job as learning facilitators to use our formative assessment skills to expose understanding and misunderstanding so that we know what to do next.
When teachers are asked, What do you know about Outcomes-Based Assessment? Their answers might be similar to those generated in NLSD:
It is important when broad statements are made that they are clarified by the group.
Clarification may be needed on the term ‘learning behaviours’. These include things like attendance, behaviour, neatness, compliance with assignment expectations. Schools or systems may have other ways to communicate these ‘Hidden Curriculum’ expectations to students and parents outside of their academic achievement scores.
Clarification may be needed around the idea that assessment is based on “where they are at right now… can change over time”. An example where a student shows competency later in the year after that unit of study has been completed. This may raise some logistical questions around how this would work within a student information system or what impact this idea has on reporting. Once specific questions or logistical barriers surface, it is possible for a school or system to determine procedures so that they can have consistency.
As Tomas Guskey states, there is NO best practice in grading. There are ‘better’ practices that we want to embrace, but there is no universal, standardized and mechanical way to generate a grade for our students. This was an empowering point with teachers to know that their professional judgment, based on an understanding of curricular outcomes and observable student behaviours, is the most important assessment practice.
Along with what educators know, it is vital that we surface what they wonder about. Questions can frame teachers’ professional inquiry for a day of learning, as well as indicate what they need to be emphasized within the agenda. Typical questions around this topic may be:
How do I translate an outcomes-based assessment rubric into a %?
How do we gather, translate and score observations and conversations so that they ‘count’ like products?
What might a teacher daybook/unit plan look like using outcomes-based assessment?
Is all assessment outcome-based assessment?
What do we do if an assignment is late or not handed in?
What is the minimum/maximum number of indicators that we need to assess in order to maintain the integrity of the outcome?
How do we use outcome-based assessment in cross-curricular teaching?
It is important that participants choose which question(s) they are most invested in to solve, and provided time within a professional learning experience to discuss possible solutions with colleagues.
Learning targets are based on curricular outcomes. There are a number of different unit and lesson planning templates used in education. One useful process is to use a thinking map. This graphic organizer allows us to see the connections amongst curricular outcomes, instructional activities and assessment criteria.
Starting in the centre, teachers can identify the connections between the nouns (concepts) and verbs (observable behaviours) of the curriculum with the activities that allow students to show those behaviours. The assessment criteria should be related to the curriculum rather than the activity.
For example, in Saskatchewan Science 10, one part of the SCI10-CD1 Outcome: Assess the implications of human actions on the local and global climate and the sustainability of ecosystems. Some of the indicators related to this outcome might be addressed in the following progression:
By unpacking into a circular thinking map, it is possible to see how the concepts and observable behaviours work together. This will lead to a holistic view of curriculum that eradicates the question of how many indicators are important to address.
Principles of Assessment
Rick Stiggins has developed a set of key ideas related to classroom assessment:
(Chapuis, Commodore, Stiggins, 2016)
From Criteria to Rubrics
There are a variety of assessment tools, including checklists, portfolios, and rubrics. They all rely on clear learning targets or criteria for student success. What does success look like? What are we looking for?
Expanding on clear learning targets, Sue Brookhart shares some of her ideas on building high-quality rubrics.
Sue Brookhart’s ideas have been incorporated into this simple editable Rubric Worksheet.
Formative and Summative Assessment
Too often, formative assessment is defined as ‘things that are not marked’, while summative assessment is defined as “things that are graded at the end of a unit”. This implies that learners can only show understanding that ‘counts’ at the end of a unit of study. So what happens to all of their thinking, work and brilliance along the way? Is it possible that a learning and assessment experience might be both or either for different students? Is it possible that formative and summative assessment are interconnected?
Definitions
One definition for assessment is the ways in which instructors gather data about their teaching and students’ learning (Northern Illinois University, Faculty Development and Instructional Design Center). This definition implies that assessment’s purpose is multi-faceted – to inform students and teachers regarding student understanding as well as to inform teachers about their practice in teaching. Assessment, whether it is formative or summative, is a snap-shot in time that changes with instruction and understanding.
Formative Assessment
In his book, Embedding Formative Assessment, Dylan Wiliam defines Formative Assessment as:
“An assessment functions formatively to the extent that evidence about student achievement is elicited, interpreted, and used by teachers, learners, or their peers to make decisions about the next steps in instruction that are likely to be better, or better founded, than the decisions they would have made in the absence of that evidence” (Wiliam, 2011).
This definition implies:
Formative describes the function of the assessment rather than the form.
Teachers, students and peers might be involved in deciding how to respond to assessment information.
There must be a responsive action based on the data in order for the assessment to be formative. Responsive actions are instructional in nature.
If formative assessments are designed with no clear decision/action implied, then the assessment is not useful. The five key strategies for improving student achievement through formative assessment are:
Who
Where the learner is going
Where the learner is now
How to get there
Teacher
1. Clarifying, sharing and understanding learning intentions and criteria for success.
2. Engineering effective classroom discussions, activities, and tasks that elicit evidence of learning.
3. Providing feedback that moves learning forward.
Peer
4. Activating learners as instructional resources for each other.
Learner
5. Activating learners as owners of their own learning.
(Wiliam, 2011, p. 46)
Summative Assessment
Summative assessment is often described as providing information about or evaluating the attainment of understanding or achievement compared to a standard. Katie White (Softening the Edges, 2017) has created a holistic view of summative assessment as part of a larger assessment cycle.
“We engage in formative assessment, feedback and self-assessment regularly. Only after all this do we verify proficiency with summative assessment. It is at this point that we make professional judgments about whether to re-enter the learning cycle because proficiency has not yet been reached or to transition into enrichment or the next learning goal… Viewing summative assessment as part of a larger continuous cycle frees us to make decisions that are right for our learners and right for ourselves” (White, 2017, p. 139).
(The Learning and Assessment Experience at UNSW)
The goal of summative assessment is to evaluate student learning. When viewed as part of a cycle, we can see that an assessment intended to be summative may, in fact, become formative. Similarly, there may be times that an assessment intended to be formative might become summative if a learner is able to show proficiency during that experience.
If we view the terms formative and summative as how the assessment is used rather than the tool or the intent for use, it can help us to see all experiences as part of a larger assessment plan.
Brookhart, S. (2013). How to Create and Use Rubrics for Formative Assessment and Grading. Alexandria: ASCD.
Chappuis, S. J., Commodore, D. C., & Stiggins, R. J. (2016). Balanced Assessment Systems: Leadership, Quality and the Role of Classroom Assessment. Thousand Oaks: Corwin.